Microscopes
We would like to tempt you with a glossy catalog of innovative models and applications for education, laboratories and industry.
• 405 Pages with featured products
• For education, life science and industry
• Detailed descriptions of the models
• Including microscope guide to assist
• With bookmarks to help you navigate
Feel free to take a look and download. Or request it now
A good microscope should have three properties:
Good resolution: Resolution power refers to the ability to produce separate images of closely placed objects so that they can be distinguished as two separate entities. The resolution power of:
The unaided human eye is about 0.2 mm (200 μm)
The light microscope is about 0.2 μm
An electron microscope is about 0.5 nm
The resolution depends on refractive index. Oil has a higher refractive index than air.
Good contrast: This can be further improved by staining the specimen.
Good magnification: This is achieved by the use of concave lenses.
Bright-Field or Light Microscope
The bright-field or light microscope forms a dark image against a brighter background.
Dark Field Microscope
Principle: In a dark field microscope, the object appears bright against a dark background. This is made possible by the use of a special darkfield condenser.
Applications: It is used to identify the living, unstained cells and thin bacteria like spirochetes which cannot be visualized by light microscopy.
Phase Contrast Microscope
It is used to visualize the living cells by creating a difference in contrast between the cells and water. It converts slight differences in refractive index and cell density into easily detectable variations in light intensity.
It is useful for studying:
Microbial motility
Determining the shape of living cells
Detecting bacterial components such as endospores and inclusion bodies.
Fluorescence Microscope
Principle: When fluorescent dyes are exposed to ultraviolet rays (UV) rays, they become excited and are said to fluoresce, i.e. they convert this invisible, short-wavelength rays into the light of longer wavelengths (visible light).
Applications: Epifluorescence microscope has the following applications:
Autofluorescence, when placed under UV lamp, e.g. Cyclospora
Microbes coated with the fluorescent dye, e.g. Acridine orange for malaria parasites (QBC) and Auramine phenol for M. tuberculosis.
Immunofluorescence: It uses a fluorescent dye tagged antibody to detect cell surface antigens or antibodies bound to cell surface antigens. There are three types: direct IF, indirect IF, and Flow cytometry.
Electron Microscope
There are two types of EM:
Transmission EM (MC type, examine the internal structure, resolution 0.5 nm, gives 2-dimensional view)
Scanning EM (examine the surfaces, resolution 7 nm, gives 3-dimensional view)
Principle of Transmission Electron Microscope
Specimen preparation: Cells are subjected to the following steps to prepare very thin specimens (20 to 100 nm thick)